## Slope And Distance

Find $\Delta x$ and $\Delta y$ for this pair of coordinates.
$P 1(0,5) \quad P 2(4,-3)$
$\Delta x=x_{2}-x_{1} \quad \Delta y=y_{2}-y_{1}$
$=4-0 \quad=-3-5$


Given two points, if $\Delta x=6$ and $\Delta y=12$, what is the slope of the line they form?

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{12}{6}=2
$$

Given two points, if $\Delta x=5$ and $\Delta y=-4$, what is the distance between them?

$$
\begin{aligned}
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} & =\sqrt{(5)^{2}+(-4)^{2}} \\
& =\sqrt{25+16} \\
& =\sqrt{41} \text { or } 6.403
\end{aligned}
$$

Find the slope of this line segment, and the distance between its two end points.

$\Delta x=4--3 \quad$ slope $=\frac{-5}{7}$ or 0.714
$\Delta x=7$
$\Delta y=-2-3$
$d=\sqrt{(7)^{2}+(-5)^{2}}$
$\Delta y=-5$
$=\sqrt{49+25}$
$=\sqrt{74}$ or 8.602

Find $\Delta x$ and $\Delta y$ for this pair of coordinates.

$$
\begin{array}{crl}
P 1(-2,-4) & P 2(3,-1) \\
\Delta x=x_{2}-x_{1} & \Delta y=y_{2}-y_{1} \\
& =3--2 & \\
\Delta x=5 & \Delta y=3
\end{array}
$$

Given two points, if $\Delta x=3$ and $\Delta y=-1$, what is the slope of the line they form?

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{-1}{3} \text { or }-0 . \overline{3}
$$

Given two points, if $\Delta x=-1$ and $\Delta y=-7$, what is the distance between them?

$$
\begin{aligned}
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} & =\sqrt{(-1)^{2}+(-7)^{2}} \\
& =\sqrt{1+49} \\
& =\sqrt{50} \quad \begin{array}{l}
\text { or } 5 \sqrt{2} \\
\text { or } 7.071
\end{array}
\end{aligned}
$$

Find the slope of this line, and the distance between the two points shown.

$\Delta x=3--3$
slope $=\frac{6}{6}=1$
$\Delta x=6$

$$
d=\sqrt{(6)^{2}+(6)^{2}}
$$

$\Delta y=1--5$
$=\sqrt{36+36}$
$\Delta y=6$

