math Antics
Worksheets

Date:

Calculating Δx and Δy

Instructions: Calculate Δx and Δy for each pair of coordinates below.
Equations: $\quad \Delta x=x_{2}-x_{1} \quad \Delta y=y_{2}-y_{1}$

1 Pr $(6,-2) \quad P 2(-3,5)$

$$
\begin{array}{rlrl}
\Delta x & =x_{2}-x_{1} & \Delta y & =y_{2}-y_{1} \\
& =-3-6 & & =5--2 \\
\Delta x=-9 & \Delta y=7
\end{array}
$$

$2 \quad P 1(-1,-3) \quad P 2(-7,0)$

$$
\begin{array}{rlrl}
\Delta x & =x_{2}-x_{1} & \Delta y & =y_{2}-y_{1} \\
& =-7--1 & & =0--3 \\
\Delta x & =-6 & \Delta y=3
\end{array}
$$

4

$$
\begin{array}{cr}
\text { P1 }(1,-10) & \text { P2 }(4,4) \\
\begin{array}{rr}
\Delta x=x_{2}-x_{1} & \Delta y=y_{2}-y_{1} \\
=4-1 & =4--10 \\
\Delta x=3 & \Delta y=14
\end{array}
\end{array}
$$

$5 \quad P 1(0,2) \quad P 2(-1,10)$

$6 \quad P 1(6,-4) \quad P 2(7,3)$
$\Delta x=x_{2}-x_{1} \quad \Delta y=y_{2}-y_{1}$
$=7-6 \quad=3-4$
$\Delta x=1 \quad \Delta y=7$

7

$$
\begin{array}{lr}
\text { P1 }(7,7) & \text { P2 }(5,3) \\
\begin{array}{rr}
\Delta x=x_{2}-x_{1} & \Delta y=y_{2}-y_{1} \\
=5-7 & =3-7 \\
\Delta x=-2 & \Delta y=-4
\end{array}
\end{array}
$$

8
P1 (-8, -5)
P2 (-1, -2)
$\Delta x=x_{2}-x_{1} \quad \Delta y=y_{2}-y_{1}$
$=-1--8 \quad=-2--5$
$\Delta x=7 \Delta y=3$
math Antics
Worksheets

Date:

Using Slope \& Distance Equations

Instructions: Use the 'deltas' given below to calculate the slope of the line they form.
Equation: \quad slope $=\frac{\Delta y}{\Delta x}$
$1 \Delta x=5, \Delta y=3$
slope $=\frac{\Delta y}{\Delta x}=\frac{3}{5}$ or 0.6
$3 \quad \Delta x=5, \Delta y=-1$
slope $=\frac{\Delta y}{\Delta x}=\frac{-1}{5}$ or -0.2
$5 \quad \Delta x=8, \Delta y=10$

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{10}{8} \text { or } 1 \frac{1}{4} \text { or } 1.25
$$

2. $\Delta x=-2, \Delta y=2$
slope $=\frac{\Delta y}{\Delta x}=\frac{2}{-2}=-1$
$4 \quad \Delta x=-12, \Delta y=-4$
slope $=\frac{\Delta y}{\Delta x}=\frac{-4}{-12}=\left(\frac{1}{3}\right.$ or $0 . \overline{3}$
3. $\Delta x=3, \Delta y=-9$
slope $=\frac{\Delta y}{\Delta x}=\frac{-9}{3}=-3$

Instructions: Use the'deltas' given to calculate the distance between the points that define them.
Equation: $\quad d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$
$1 \quad \Delta x=3, \Delta y=-4$
$d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{(3)^{2}+(-4)^{2}}$
$=\sqrt{9+16}$
$=\sqrt{25}=5$
$2 \Delta x=-6, \Delta y=1$

$$
\begin{aligned}
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} & =\sqrt{(-6)^{2}+(1)^{2}} \\
& =\sqrt{36+1} \\
& =\sqrt{37} \text { or } 6.083
\end{aligned}
$$

4. $\Delta x=-4, \Delta y=2$
$d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{(-4)^{2}+(2)^{2}}$

$$
\begin{aligned}
& =\sqrt{16+4} \\
& =\sqrt{20} \text { or } 2 \sqrt{5} \\
& \text { or } 4.472
\end{aligned}
$$

$3 \quad \Delta x=8, \Delta y=-3$
$d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{(8)^{2}+(-3)^{2}}$
$=\sqrt{64+9}$
$=\sqrt{73}$ or 8.544

Date:

Calculating Slope \& Distance - Set 1

Instructions: Refer to the graph below when answering the following questions.

1 Find the distance between points E and C, and the slope of the line they form.

$$
\begin{aligned}
& \Delta x=6--4=10 \Delta y=5--3=8 \\
& d=\sqrt{(10)^{2}+(8)^{2}}=\sqrt{100+64} \\
& d=\sqrt{164} \text { or } 2 \sqrt{41} \\
& \text { or } 12.806
\end{aligned} \quad \text { slope }=\frac{8}{10}=\left(\frac{4}{5}\right) \text { or } 0.8
$$

2 Find the distance between points B and D, and the slope of the line they form.

$$
\begin{aligned}
\Delta x=3-0=3 & \Delta y=0-4=-4 \\
d=\sqrt{(3)^{2}+(-4)^{2}} & =\sqrt{9+16} \\
d & =\sqrt{25}=5
\end{aligned}
$$

$$
\text { slope }=\frac{-4}{3}=-1 \frac{1}{3} \text { or }-1 . \overline{3}
$$

3 Find the distance between points D and F, and the slope of the line they form.

$$
\begin{aligned}
& \Delta x=4-3=1 \quad \Delta y=-7-0=-7 \\
& d=\sqrt{(1)^{2}+(-7)^{2}}=\sqrt{1+49} \quad \text { slope }=\frac{-7}{1}=-7 \\
& d=\sqrt{50} \text { or } 5 \sqrt{2} \\
& \text { or } 7.071
\end{aligned}
$$

4 Find the distance between points A and B, and the slope of the line they form.

$$
\begin{aligned}
& \Delta x=0--5=5 \quad \Delta y=4-7=-3 \\
& d=\sqrt{(5)^{2}+(-3)^{2}}=\sqrt{25+9} \\
& d=\sqrt{34} \text { or } 5.831
\end{aligned}
$$

$$
\text { slope }=\frac{-3}{5} \text { or }-0.6
$$

Date:

Calculating Slope \& Distance - Set 2

Instructions: Refer to the graph below when answering the following questions.

1 Find the distance between points B and A, and the slope of the line they form.

$$
\begin{aligned}
\Delta x=3--5=8 & \Delta y=5-3=2 \\
d=\sqrt{(8)^{2}+(2)^{2}} & =\sqrt{64+4} \\
d & =\sqrt{68} \text { or } 2 \sqrt{17}
\end{aligned} \quad \text { or } 8.246 \quad \text { slope }=\frac{2}{8}=\left(\frac{1}{4} \text { or } 0.25\right.
$$

2 Find the distance between points B and F, and the slope of the line they form.

$$
\begin{aligned}
& \Delta x=0--5=5 \quad \Delta y=-4-3=-7 \\
& d=\sqrt{(5)^{2}+(-7)^{2}}=\sqrt{25+49} \\
& d=\sqrt{74} \text { or } 8.602
\end{aligned}
$$

$$
\text { slope }=\frac{-7}{5}=-1 \frac{2}{5} \text { or }-1.4
$$

3 Find the distance between points E and C , and the slope of the line they form.

$$
\begin{aligned}
& \Delta x=2--5=7 \quad \Delta y=2--5=7 \\
& d=\sqrt{(7)^{2}+(7)^{2}}=\sqrt{49+49} \\
& d=\sqrt{98} \text { or } 7 \sqrt{2} \\
& \text { or } 9.899
\end{aligned}
$$

4 Find the distance between points E and D, and the slope of the line they form.

$$
\begin{aligned}
\Delta x=6--5=11 & \Delta y=-1--5=4 \\
d=\sqrt{(11)^{2}+(4)^{2}} & =\sqrt{121+16} \quad \text { slope }=\frac{4}{11} \text { or } 0 . \overline{36} \\
d & =\sqrt{137} \text { or } 11.705
\end{aligned}
$$

