

Name:

SAD 1

Date:

Calculating Δx and Δy

	SAD I
Instructions: Calculate Δx and Δy for each pair of co	ordinates below.
Equations: $\Delta x = x_2 - x_1$ $\Delta y = y_2 - y_1$	
1 P1 (6, -2) P2 (-3, 5)	2 P1 (-1,-3) P2 (-7,0)
$\Delta x = x_2 - x_1 \qquad \Delta y = y_2 - y_1$	$\Delta x = x_2 - x_1 \qquad \Delta y = y_2 - y_1$
= -3 - 6 = 52 ($\Delta x = -9$) ($\Delta y = 7$)	= -71 = 03 ($\Delta x = -6$) ($\Delta y = 3$)
3 P1 (8, -2) P2 (0, 2)	4 P1 (1,-10) P2 (4,4)
$\Delta x = x_2 - x_1$ $\Delta y = y_2 - y_1$ = 0 - 8 = 22	$\Delta x = x_2 - x_1 \qquad \Delta y = y_2 - y_1$ $= 4 - 1 \qquad = 410$
$\Delta x = -8$ $\Delta y = 4$	$\Delta x = 3 \qquad \Delta y = 14$
5 P1 (0, 2) P2 (-1, 10)	6 P1 (6, -4) P2 (7, 3)
$\Delta x = x_2 - x_1 \qquad \Delta y = y_2 - y_1$ $= -1 - 0 \qquad = 10 - 2$	$\Delta x = x_2 - x_1$ $\Delta y = y_2 - y_1$ = 7 - 6 = 34
$\Delta x = -1 \qquad \Delta y = 8$	$\Delta x = 1 \qquad \Delta y = 7$
7 P1 (7,7) P2 (5,3)	8 P1 (-8, -5) P2 (-1, -2)
$\Delta x = x_2 - x_1$ $\Delta y = y_2 - y_1$ = 5 - 7 = 3 - 7	$\Delta x = x_2 - x_1$ $\Delta y = y_2 - y_1$ = -18 = -25
$\triangle x = -2 \qquad \triangle y = -4$	$\Delta x = 7$ $\Delta y = 3$

Math Antics[®] Worksheets

Name:

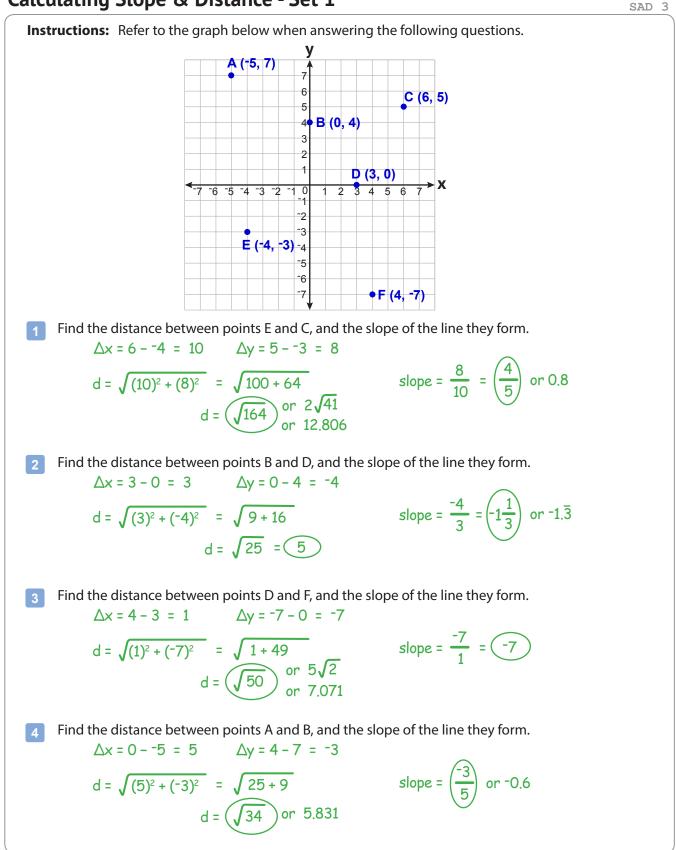
SAD 2

Date:

Using Slope & Distance Equations

Instructions: Use the deltas' given below to calculate the slope of the line they form.
Equation:
$$slope = \frac{\Delta y}{\Delta x}$$

1 $\Delta x = 5$, $\Delta y = 3$
 $slope = \frac{\Delta y}{\Delta x} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ or 0.6
2 $\Delta x = -2$, $\Delta y = 2$
 $slope = \frac{\Delta y}{\Delta x} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ or 0.6
3 $\Delta x = 5$, $\Delta y = -1$
 $slope = \frac{\Delta y}{\Delta x} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ or -0.2
4 $\Delta x = -12$, $\Delta y = -4$
 $slope = \frac{\Delta y}{\Delta x} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ or 0.3
5 $\Delta x = 8$, $\Delta y = 10$
 $slope = \frac{\Delta y}{\Delta x} = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$ or $1\frac{1}{4}$
or 1.25
6 $\Delta x = 3$, $\Delta y = -9$
 $slope = \frac{\Delta y}{\Delta x} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$ (-3)
7 Instructions: Use the 'deltas' given to calculate the distance between the points that define them.
Equation: $d = \sqrt{(\Delta x)^2 + (\Delta y)^2}$
1 $\Delta x = 3$, $\Delta y = -4$
 $d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(3)^2 + (-4)^2}$
 $= \sqrt{25} = (5)$
3 $\Delta x = 8$, $\Delta y = -3$
 $d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(-6)^2 + (1)^2}$
 $= \sqrt{364 + 9}$
 $= \begin{pmatrix} 7 \\ 2 \end{pmatrix}$ or 8.544
4 $\Delta x = -4$, $\Delta y = 2$
 $d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(-4)^2 + (2)^2}$
 $= \sqrt{164 + 4}$
 $= \sqrt{(20)}$ or $2\sqrt{5}$
or 4.472


© 2020 Math Plus Motion, LLC

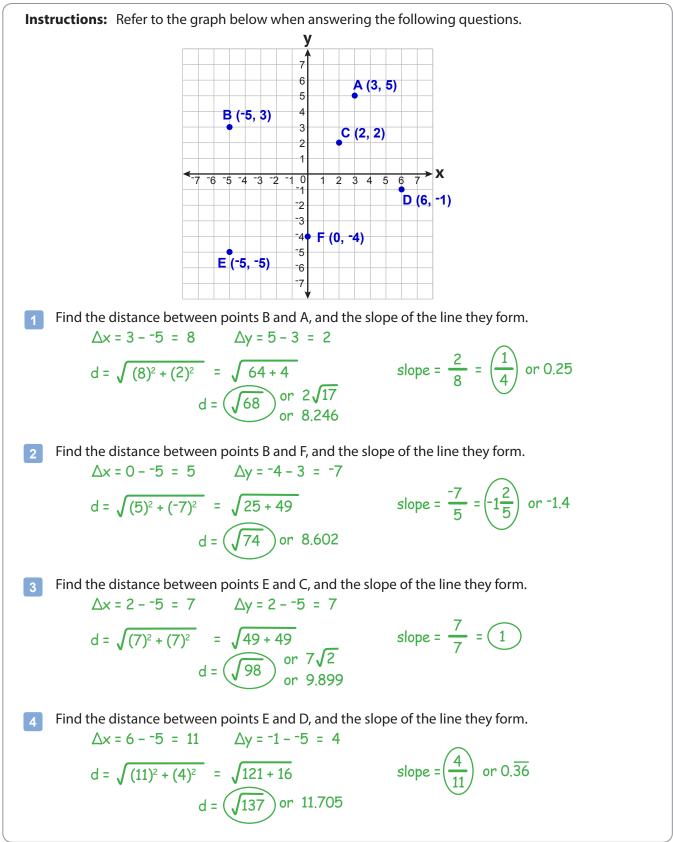
Worksheets

Name:

Date:

Calculating Slope & Distance - Set 1

© 2020 Math Plus Motion, LLC



Name:

Date:

SAD 4

Calculating Slope & Distance - Set 2

