

Date:

Finding an Unknown Side - Set 1

PT 1

Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)

$$4^{2} + 4^{2} = x^{2}$$
 $16 + 16 = x^{2}$
 $32 = x^{2}$
or $4\sqrt{2}$
or $5.656...$

3

5

6

Finding an Unknown Side - Set 2

PT 2

Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)

3

5

6

Date:

Is it a right triangle?

PT 3

Instructions: Use the Pythagorean Theorem to test the triangles shown or described in each problem below.

If a triangle has sides that are 12, 10 and 6 meters long, is it a right triangle?

NOTE: when plugging the three sides into the test equation, always make the longest side 'c'.

Test:
$$6^2 + 10^2 \stackrel{?}{=} 12^2$$

 $36 + 100 \stackrel{?}{=} 144$
 $136 \neq 144$ Nope!

Is this a right triangle?

- Is a triangle with side lengths of 4, 5, and 6 inches a right triangle?
- A triangle has side lengths that are 7 cm, 7 cm and 11cm. Is it a right triangle?

Is this a right triangle?

Is this a right triangle?

