math Antics
Worksheets

Date:

Finding an Unknown Side - Set 1
Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side ' x '. (You can use a calcuator for the arithmetic if you want to.)

2

$$
\begin{aligned}
\sqrt{6}^{2}+2^{2} & =x^{2} \\
6+4 & =x^{2} \\
10 & =x^{2}
\end{aligned} \quad \begin{array}{r}
\sqrt{x^{2}}=\sqrt{10} \\
x=\sqrt{10} \\
\text { or } 3.162 \ldots .
\end{array}
$$

5

$$
6
$$

6

$$
\begin{aligned}
x^{2}+1.5^{2} & =2.5^{2} \\
x^{2}+2.25 & =6.25 \\
-2.25 & -2.25 \\
x^{2} & =4
\end{aligned} \int^{\sqrt{x^{2}}=\sqrt{4}} x x=2
$$

math Antics
Worksheets

Date:

Finding an Unknown Side - Set 2
Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side ' x '. (You can use a calcuator for the arithmetic if you want to.)

1

3

5
$\begin{aligned} 0.3^{2}+0.4^{2} & =x^{2} \\ 0.09+0.16 & =x^{2} \\ 0.25 & =x^{2}\end{aligned} \quad \begin{array}{r}\sqrt{x^{2}}=\sqrt{0.25} \\ x=0.5 \\ \text { or } \sqrt{0.25}\end{array}$

$$
\begin{aligned}
x^{2}+2^{2} & =\sqrt{12}^{2} \\
x^{2}+4 & =12 \\
-4 & -4 \\
x^{2} & =8
\end{aligned} \quad \begin{array}{r}
\sqrt{x^{2}}=\sqrt{8} \\
x=\sqrt{8} \\
\text { or } 2 \sqrt{2} \\
\text { or } 2.828 \ldots
\end{array}
$$

$$
x^{2}=25
$$

$$
\begin{aligned}
x^{2}+1^{2} & =\sqrt{26}^{2} \\
x^{2}+1 & =26 \\
-1 & -1 \\
x^{2} & =25
\end{aligned} \quad \begin{array}{r}
x^{2} \\
\end{array} \quad x=5
$$

Date:

Is it a right triangle?

Instructions: Use the Pythagorean Theorem to test the triangles shown or described in each problem below.

1 If a triangle has sides that are 12,10 and 6 meters long, is it a right triangle?

NOTE: when plugging the three sides into the test equation, always make the longest side ' c '.
Test: $\quad 6^{2}+10^{2} \stackrel{?}{=} 12^{2}$

$$
\begin{aligned}
36+100 & \stackrel{?}{=} 144 \\
136 & \neq 144 \text { Nope! }
\end{aligned}
$$

Is a triangle with side lengths of 4,5 , and 6 inches a right triangle?
Test: $4^{2}+5^{2} \stackrel{?}{=} 6^{2}$

$$
\begin{aligned}
16+25 & \stackrel{?}{=} 36 \\
41 & \neq 36
\end{aligned}
$$

5 Is this a right triangle?

Test:

$$
\begin{aligned}
4^{2}+5^{2} & \stackrel{?}{=} \sqrt{41}^{2} \\
16+25 & \stackrel{?}{=} 41 \\
41 & =41 \text { Yes }
\end{aligned}
$$

2 Is this a right triangle?

Test:

$$
\begin{aligned}
4^{2}+4^{2} & \stackrel{?}{=} \sqrt{32}^{2} \\
16+16 & \stackrel{?}{=} 32 \\
32 & =32
\end{aligned}
$$

4 A triangle has side lengths that are $7 \mathrm{~cm}, 7 \mathrm{~cm}$ and 11 cm . Is it a right triangle ?
Test: $7^{2}+7^{2} \stackrel{?}{=} 11^{2}$
$49+49 \stackrel{?}{=} 121$
$98 \neq 121$

6
Is this a right triangle?

Test:

$$
\begin{aligned}
3^{2}+\sqrt{5}^{2} & \stackrel{?}{=} \sqrt{13}^{2} \\
9+5 & \stackrel{?}{=} 13 \\
14 & \neq 13 \text { No }
\end{aligned}
$$

