Finding an Unknown Side - Set 1

PT 1

Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)

1

$$4^{2} + 4^{2} = x^{2}$$

$$16 + 16 = x^{2}$$

$$32 = x^{2}$$
or $4\sqrt{2}$
or $5.656...$

3

$$x^{2} + 3^{2} = \sqrt{13}^{2}$$

$$x^{2} + 9 = 13$$

$$-9 - 9$$

$$x^{2} = 4$$

$$x = 2$$

5

$$x^{2} + 3^{2} = 4^{2}$$
 $x^{2} + 9 = 16$
 $-9 - 9$
 $x^{2} = 7$

or 2.645...

2

$$x^{2} + 12^{2} = 15^{2}$$

$$x^{2} + 144 = 225$$

$$-144 - 144$$

$$x^{2} = 81$$

$$x = 9$$

4

$$\sqrt{6^{2}+2^{2}} = x^{2}$$

$$6 + 4 = x^{2}$$

$$10 = x^{2}$$
or 3.162...

6

$$x^{2} + 1.5^{2} = 2.5^{2}$$
 $x^{2} + 2.25 = 6.25$
 $-2.25 - 2.25$
 $x^{2} = 4$
 $x = 2$

Finding an Unknown Side - Set 2

PT 2

Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)

$$6^{2} + 8^{2} = x^{2}$$

$$36 + 64 = x^{2}$$

$$100 = x^{2}$$

$$x^{2} + 1^{2} = \sqrt{26}^{2}$$

$$x^{2} + 1 = 26$$

$$-1 - 1$$

$$x^{2} = 25$$

3

$$\sqrt{6^2 + 3^2} = x^2$$
 $6 + 9 = x^2$
 $15 = x^2$
or 3872

$$5^{2} + x^{2} = \sqrt{50}^{2}$$

$$25 + x^{2} = 50$$

$$-25$$

$$x^{2} = 25$$

$$x = 5$$

$$x^{2} + 2^{2} = \sqrt{12}^{2}$$
 $x^{2} + 4 = 12$
 -4
 $x^{2} = 8$

or $2\sqrt{2}$

or $2.828...$

6

$$0.3^{2} + 0.4^{2} = x^{2}$$

$$0.09 + 0.16 = x^{2}$$

$$0.25 = x^{2}$$
or $\sqrt{0.25}$

Is it a right triangle?

PT 3

Instructions: Use the Pythagorean Theorem to test the triangles shown or described in each problem below.

If a triangle has sides that are 12, 10 and 6 meters long, is it a right triangle?

NOTE: when plugging the three sides into the test equation, always make the longest side 'c'.

Test:
$$6^2 + 10^2 \stackrel{?}{=} 12^2$$

 $36 + 100 \stackrel{?}{=} 144$
 $136 \neq 144$ Nope!

Is this a right triangle?

Test:
$$4$$
 $4^2 + 4^2 \stackrel{?}{=} \sqrt{32}^2$
 $16 + 16 \stackrel{?}{=} 32$
 $32 = 32$ Yes

Is a triangle with side lengths of 4, 5, and 6 inches a right triangle?

Test:
$$4^2 + 5^2 \stackrel{?}{=} 6^2$$

 $16 + 25 \stackrel{?}{=} 36$
 $41 \neq 36$ No

A triangle has side lengths that are 7 cm, 7 cm and 11cm. Is it a right triangle?

Test:
$$7^2 + 7^2 \stackrel{?}{=} 11^2$$

 $49 + 49 \stackrel{?}{=} 121$
 $98 \neq 121$ No

Is this a right triangle?

Test:

$$4^{2} + 5^{2} \stackrel{?}{=} \sqrt{41}^{2}$$
 $16 + 25 \stackrel{?}{=} 41$
 $41 = 41$ Yes

Is this a right triangle?

Test:

$$3^{2} + \sqrt{5}^{2} = \sqrt{13}^{2}$$

 $9 + 5 = 13$
 $14 \neq 13$ No