Date:

Finding the Volume of Rectangular Prisms

Instructions: Find the volume of each rectangular prism by multiplying the area of the 'base' times the length the base has been extended. (Don't forget about the units!)

1

$\underset{\text { of Base }}{\text { Area }}=5 \times 6=30 \mathrm{~m}^{2}$
Volume $=30 \mathrm{~m}^{2} \times 8 \mathrm{~m}=240 \mathrm{~m}^{3}$

3

$\underset{\text { of Base }}{\text { Area }}=5 \times 5=25 \mathrm{~cm}^{2}$
Volume $=25 \mathrm{~cm}^{2} \times 20 \mathrm{~cm}=500 \mathrm{~cm}^{3}$

5

$$
\underset{\text { Af Base }}{\text { Area }}=3 \times 5=15 \mathrm{in}^{2}
$$

Volume $=15 \mathrm{in}^{2} \times 9$ in $=135 \mathrm{in}^{3}$

2

$$
\underset{\text { of Base }}{\text { Area }}=2 \times 7=14 \mathrm{in}^{2}
$$

Volume $=14 \mathrm{in}^{2} \times 10 \mathrm{in}=140 \mathrm{in}^{3}$

4

$$
\underset{\text { Area }}{\text { Arease }} \begin{aligned}
& \text { Are }
\end{aligned}=9 \times 4=36 \mathrm{ft}^{2}
$$

Volume $=36 \mathrm{ft}^{2} \times 12 \mathrm{ft}=432 \mathrm{ft}^{3}$

6

Area $=4 \times 4=16 \mathrm{~m}^{2}$
Volume $=16 \mathrm{~m}^{2} \times 6 \mathrm{~m}=96 \mathrm{~m}^{3}$
math Antics
Worksheets

Date:

Finding the Volume of Triangular Prisms

Instructions: Find the volume of each triangular prism by multiplying the area of the 'base'times the length the base has been extended. (Don't forget about the units!)

1

$\underset{\text { of Base }}{\text { Area }}=\frac{1}{2}(9 \times 10)=\frac{90}{2}=45 \mathrm{~m}^{2}$
Volume $=45 \mathrm{~m}^{2} \times 12 \mathrm{~m}=540 \mathrm{~m}^{3}$

3

$\underset{\text { of Base }}{\text { Area }}=\frac{1}{2}(6 \times 4)=\frac{24}{2}=12 \mathrm{~cm}^{2}$
Volume $=12 \mathrm{~cm}^{2} \times 18 \mathrm{~cm}=216 \mathrm{~cm}^{3}$

5

$\underset{\substack{\text { Area } \\ \text { of Base }}}{\operatorname{Act}}=\frac{1}{2}(4 \times 7)=\frac{28}{2}=14 \mathrm{~m}^{2}$
Volume $=14 \mathrm{~m}^{2} \times 9 \mathrm{~m}=126 \mathrm{~m}^{3}$

2

$\underset{\substack{\text { of Base }}}{\text { Area }}=\frac{1}{2}(4 \times 4)=\frac{16}{2}=8 \mathrm{in}^{2}$
Volume $=8 \mathrm{in}^{2} \times 8 \mathrm{in}=64 \mathrm{in}^{3}$

4

$\underset{\substack{\text { of Base }}}{\text { Area }}=\frac{1}{2}(5 \times 8)=\frac{40}{2}=20 \mathrm{ft}^{2}$
Volume $=20 \mathrm{ft}^{2} \times 12 \mathrm{ft}=240 \mathrm{ft}^{3}$

6

$\underset{\substack{\text { of Base }}}{\operatorname{Area}}=\frac{1}{2}(9 \times 10)=\frac{90}{2}=45 \mathrm{in}^{2}$
Volume $=45 \mathrm{in}^{2} \times 14 \mathrm{in}=630 \mathrm{in}^{3}$
math Antics
Worksheets

Date:

Finding the Volume of Cylinders

Instructions: Find the volume of each cylinder by multiplying the area of the 'base' times the length the base has been extended. (Use 3.14 for Pi and don't forget about the units!)

1

$$
\begin{aligned}
\underset{\text { of Base }}{\text { Area }}=\pi \times(3 \mathrm{~m})^{2} & =3.14 \times 9 \mathrm{~m}^{2} \\
& =28.26 \mathrm{~m}^{2} \\
V=28.26 \mathrm{~m}^{2} \times 6 \mathrm{~m} & =169.56 \mathrm{~m}^{3}
\end{aligned}
$$

3

$\underset{\text { of Base }}{\text { Area }}=\pi \times(4 \mathrm{~cm})^{2}=3.14 \times 16 \mathrm{~cm}^{2}$

$$
=50.24 \mathrm{~cm}^{2}
$$

$V=50.24 \mathrm{~cm}^{2} \times 25 \mathrm{~cm}=1,256 \mathrm{~cm}^{3}$

$$
\begin{array}{r}
\text { Area }=\pi \times(1 \mathrm{in})^{2}=3.14 \times 1 \mathrm{in}^{2} \\
\text { of Base } \\
\\
V=3.14 \mathrm{in}^{2}
\end{array}
$$

2

$$
\begin{array}{r}
\begin{array}{l}
\text { Area }=\pi \times(5 \mathrm{in})^{2}=3.14 \times 25 \mathrm{in}^{2} \\
\\
\\
=78.5 \mathrm{in}^{2} \\
V=78.5 \mathrm{in}^{2} \times 20 \mathrm{in}=1,570 \mathrm{in}^{3}
\end{array}
\end{array}
$$

4

$$
\begin{aligned}
\text { Area }=\pi \times(6 \mathrm{~m})^{2}= & 3.14 \times 36 \mathrm{~m}^{2} \\
& =113.04 \mathrm{~m}^{2} \\
V=113.04 \mathrm{~m}^{2} \times 7 \mathrm{~m} & =791.28 \mathrm{~m}^{3}
\end{aligned}
$$

6

$$
\begin{aligned}
\underset{\text { Ar Base }}{\text { Area }}=\pi \times(2 \mathrm{~cm})^{2} & =3.14 \times 4 \mathrm{~cm}^{2} \\
& =12.56 \mathrm{~cm}^{2} \\
V=12.56 \mathrm{~cm}^{2} \times 10 \mathrm{~cm} & =125.6 \mathrm{~cm}^{3}
\end{aligned}
$$

Date:

Finding the Volume of Spheres and Cones - Set 1

Instructions: Find the volume of each sphere or cone using the formulas given. (Use 3.14 for Pi , round answers to two decimal places, and don't forget about the units!)
Formula for a Sphere
\quad Volume $=\frac{4}{3} \times \pi \times r^{3}$
Formula for a Cone
Volume $=\frac{1}{3} \times h \times \pi \times r^{2}$

1

$$
\begin{aligned}
& V=\frac{4}{3} \times 3.14 \times(2 \times 2 \times 2) \mathrm{m}^{3} \\
& =\frac{4 \times 25.12 \mathrm{~m}^{3}}{3}=33.49 \mathrm{~m}^{3}
\end{aligned}
$$

3

$$
v=\frac{1}{3} \times 9 \mathrm{~m} \times 3.14 \times(7 \times 7) \mathrm{m}^{2}
$$

$$
=3 \mathrm{~m} \times 153.86 \mathrm{~m}^{2}=461.58 \mathrm{~m}^{3}
$$

4

$V=\frac{1}{3} \times 6 \mathrm{in} \times 3.14 \times(2 \times 2) \mathrm{in}^{2}$
$=2 \mathrm{in} \times 12.56 \mathrm{in}^{2}=25.12 \mathrm{in}^{3}$

5

$$
\begin{aligned}
& V=\frac{4}{3} \times 3.14 \times(4 \times 4 \times 4) \mathrm{km}^{3} \\
= & \frac{4 \times 200.96 \mathrm{~km}^{3}}{3}=267.95 \mathrm{~km}^{3}
\end{aligned}
$$

Date:

Finding the Volume of Spheres and Cones - Set 2

Instructions: Find the volume of each sphere or cone using the formulas given. (Use 3.14 for Pi , round answers to two decimal places, and don't forget about the units!)
Formula for a Sphere
Volume $=\frac{4}{3} \times \pi \times r^{3}$
Formula for a Cone
Volume $=\frac{1}{3} \times h \times \pi \times r^{2}$

1

$$
\begin{aligned}
& V=\frac{1}{3} \times 8 \mathrm{~m} \times 3.14 \times(3 \times 3) \mathrm{m}^{2} \\
= & 2.67 \mathrm{~m} \times 28.26 \mathrm{~m}^{2}=75.45 \mathrm{~m}^{3}
\end{aligned}
$$

2

$V=\frac{1}{3} \times 3$ in $\times 3.14 \times(2 \times 2) \mathrm{in}^{2}$
$=1 \mathrm{in} \times 12.56 \mathrm{in}^{2}=12.56 \mathrm{in}^{3}$

$$
\begin{aligned}
V & =\frac{4}{3} \times 3.14 \times(1.5 \times 1.5 \times 1.5) \mathrm{m}^{3} \\
& =\frac{4 \times 10.598 \mathrm{~m}^{3}}{3}=14.13 \mathrm{~m}^{3}
\end{aligned}
$$

3

$$
\begin{aligned}
& V=\frac{4}{3} \times 3.14 \times(8 \times 8 \times 8) \mathrm{cm}^{3} \\
= & \frac{4 \times 1607.68 \mathrm{~cm}^{3}}{3}=2,143.57 \mathrm{~cm}^{3}
\end{aligned}
$$

5

$V=\frac{1}{3} \times 9 \mathrm{in} \times 3.14 \times(2.5 \times 2.5) \mathrm{in}^{2}$
$=3 \mathrm{in} \times 19.625 \mathrm{in}^{2}=58.88 \mathrm{in}^{3}$

